Gambaran skematis siklus refrigerasi kompresi uap
Gambaran skematis siklus refrigerasi termasuk perubahan tekanannya
Siklus refrigerasi kompresi mengambil
keuntungan dari kenyataan bahwa fluida yang bertekanan tinggi pada suhu
tertentu cenderung menjadi lebih dingin jika dibiarkan mengembang. Jika
perubahan tekanan cukup tinggi, maka gas yang ditekan akan menjadi lebih panas
daripada sumber dingin diluar (contoh udara diluar) dan gas yang mengembang
akan menjadi lebih dingin daripada suhu dingin yang dikehendaki. Dalam kasus
ini, fluida digunakan untuk mendinginkan lingkungan bersuhu rendah dan membuang
panas ke lingkungan yang bersuhu tinggi.
Siklus refrigerasi kompresi uap memiliki
dua keuntungan. Pertama, sejumlah besar energi panas diperlukan untuk merubah
cairan menjadi uap, dan oleh karena itu banyak panas yang dapat dibuang dari
ruang yang disejukkan. Kedua, sifat-sifat isothermal penguapan membolehkan
pengambilan panas tanpa menaikan suhu fluida kerja ke suhu berapapun
didinginkan. Hal ini berarti bahwa laju perpindahan panas menjadi tinggi, sebab
semakin dekat suhu fluida kerja mendekati suhu sekitarnya akan semakin rendah
laju perpindahan panasnya.
Siklus refrigerasi ditunjukkan dalam Gambar
1 dan 2 dan dapat dibagi menjadi tahapan-tahapan berikut:
1 – 2. Cairan refrigeran dalam evaporator menyerap panas dari sekitarnya, biasanya udara, air atau cairan proses lain. Selama proses ini cairan merubah bentuknya dari cair menjadi gas, dan pada keluaran evaporator gas ini diberi pemanasan berlebih/ superheated gas.
1 – 2. Cairan refrigeran dalam evaporator menyerap panas dari sekitarnya, biasanya udara, air atau cairan proses lain. Selama proses ini cairan merubah bentuknya dari cair menjadi gas, dan pada keluaran evaporator gas ini diberi pemanasan berlebih/ superheated gas.
2 – 3. Uap yang diberi panas berlebih masuk menuju kompresor dimana tekanannya dinaikkan. Suhu juga akan meningkat, sebab bagian energi yang menuju proses kompresi dipindahkan ke refrigeran.
3 – 4. Superheated gas bertekanan tinggi lewat dari kompresor menuju kondenser. Bagian awal proses refrigerasi (3-3a) menurunkan panas superheated gas sebelum gas ini dikembalikan menjadi bentuk cairan (3a-3b). Refrigerasi untuk proses ini biasanya dicapai dengan menggunakan udara atau air.
Penurunan suhu lebih lanjut terjadi pada pekerjaan
pipa dan penerima cairan (3b - 4), sehingga cairan refrigeran didinginkan ke
tingkat lebih rendah ketika cairan ini menuju alat ekspansi.
4 - 1 Cairan yang sudah didinginkan dan bertekanan tinggi melintas melalui peralatan ekspansi, yang mana akan mengurangi tekanan dan mengendalikan aliran menuju
Operasi refrigerasi butuh suatu mesin
yang disebut dengan refrigerator. Refrigerator merupakan kumpulan serangkaian
peralatan, seperti:
1. Kompressor.
2. Kondensor.
3. Akumulator.
4. Mesin ekspansi / katup ekspansi.
5. Evaporator.
1. Kompressor
Kompressor adalah alat yang digunakan untuk menghisap uap refrigerant dan mengkompresinya sehingga tekanan uap refrigerant naik sampai ke tekanan yang diperlukan untuk pengembunan (kondensasi) uap regrigerant di dalam kondensor.
Kompressor ini digerakkan oleh sumber tenaga dari mesin penggerak, seperti:
• Motor listrik
• Motor bakar
• Diesel
• Mesin uap
• Turbin gas
Pada kompressor, berlaku persamaan neraca energi;
1. Kompressor.
2. Kondensor.
3. Akumulator.
4. Mesin ekspansi / katup ekspansi.
5. Evaporator.
1. Kompressor
Kompressor adalah alat yang digunakan untuk menghisap uap refrigerant dan mengkompresinya sehingga tekanan uap refrigerant naik sampai ke tekanan yang diperlukan untuk pengembunan (kondensasi) uap regrigerant di dalam kondensor.
Kompressor ini digerakkan oleh sumber tenaga dari mesin penggerak, seperti:
• Motor listrik
• Motor bakar
• Diesel
• Mesin uap
• Turbin gas
Pada kompressor, berlaku persamaan neraca energi;
Neraca energi adalah cabang keilmuan yang mempelajari kesetimbangan energi dalam sebuah sistem. Neraca energi dibuat berdasarkan pada hukum pertama termodinamika. Hukum pertama ini menyatakan kekekalan energi, yaitu energi tidak dapat dimusnahkan atau dibuat, hanya dapat diubah bentuknya. Perumusan dari neraca energi suatu sistem mirip dengan perumusan neraca massa. Namun, terdapat beberapa hal yang perlu diperhatikan yaitu suatu sistem dapat berupa sistem tertutup namun tidak terisolasi (tidak dapat terjadi perpindahan massa namun dapat terjadi perpindahan panas) dan hanya terdapat satu neraca energi untuk suatu sistem (tidak seperti neraca massa yang memungkinkan adanya beberapa neraca komponen). Suatu neraca energi memiliki persamaan:
- Energi masuk = Energi keluar + Energi akumulasi
Tidak seperti neraca massa yang memiliki variabel produksi, neraca energi tidak memiliki variabel produksi. Hal ini disebabkan energi tidak dapat diproduksi, hanya dapat diubah bentuknya. Namun, bila terdapat suatu jenis energi diabaikan, misalnya bila neraca dibuat dengan hanya memperhitungkan energi kalor saja, maka persamaan neraca energi akan menjadi
- Kalor masuk + Kalor produksi = Kalor keluar + Kalor akumulasi
dengan Kalor produksi bernilai negatif jika kalor dikonsumsi. Neraca energi digunakan secara luas pada bidang ilmu murni seperti fisika, biologi, kimia dan geografi.
Karena kompressi,
fluida kerja (uap refrigerant) terkompressi menjadi naik entalpinya (H2 > H
), sehingga dapat dikatakan energi dari sumber digunakan untuk menaikkan
entalpi fluida kerja.
2. Kondensor
Kondensor merupakan alat penukar panas yang berguna untuk mendinginkan uap refrigerant dari kompressor agar dapat mengembun menjadi cairan. Pada saat pengembunan ini, refrigerant mengeluarkan sejumlah kalori (panas pengembunan) yang mana panas ini diterima oleh media pendingin di dalam kondensor.
3. Akumulator
Merupakan alat yang berguna untuk mengumpulkan cairan refrigerant yang berasal dari kondensor. Dengan adanya alat ini akan memudahkan pengaturan stock dari total refrigerant.
4. Mesin Ekspansi atau Katup Ekspansi
Mesin atau katup ekspansi ini berfungsi untuk menurunkan tekanan dari cairan refrigerant sebelum masuk ke evaporator, sehingga akan memudahkan refrigerant menguap di evaporator dan menyerap kalori (panas) dari media yang didinginkan.
5. Evaporator
Juga merupakan alat penukar panas. Refrigerant cair dengan tekanan rendah setelah proses ekspansi, diuapkan dalam alat ini. Untuk penguapan refrigerant cair ini tentunya diperlukan sejumlah kalori, yang mana diambil dari media yang akan didinginkan oleh sistem refrigerasi. Misalnya pada mesin Air Conditioning (AC), media yang didinginkan adalah udara di dalam ruangan (kamar). Begitu pula pada kulkas, media yang didinginkan adalah ruangan dalam kulkas dan segala sesuatu yang berada dalam kulkas. Uap refrigerant yang terbentuk di evaporator langsung dihisap oleh kompressor, demikian seterusnya mengulangi langkah pertama tadi sehingga membentuk suatu siklus, yang disebut dengan siklus refrigerasi.
Tidak ada komentar:
Posting Komentar